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Marine ice-sheet dynamics. Part 1.
The case of rapid sliding
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Marine ice sheets are continental ice masses resting on bedrock below sea level.
Their dynamics are similar to those of land-based ice sheets except that they must
couple with the surrounding floating ice shelves at the grounding line, where the ice
reaches a critical flotation thickness. In order to predict the evolution of the ground-
ing line as a free boundary, two boundary conditions are required for the diffusion
equation describing the evolution of the grounded-ice thickness. By analogy with
Stefan problems, one of these conditions imposes a prescribed ice thickness at the
grounding line and arises from the fact that the ice becomes afloat. The other condition
must be determined by coupling the ice sheet to the surrounding ice shelves. Here
we employ matched asymptotic expansions to study the transition from ice-sheet to
ice-shelf flow for the case of rapidly sliding ice sheets. Our principal results are that
the ice flux at the grounding line in a two-dimensional ice sheet is an increasing
function of the depth of the sea floor there, and that ice thicknesses at the grounding
line must be small compared with ice thicknesses inland. These results indicate that
marine ice sheets have a discrete set of steady surface profiles (if they have any at all)
and that the stability of these steady profiles depends on the slope of the sea floor at
the grounding line.

1. Introduction
Continental ice sheets, such as those covering Greenland and Antarctica, generally

behave as thin viscous films spreading under their own weight, subject to mass gain
and loss at their surface owing to snowfall and melting. In their simplest form,
mathematical models for ice-sheet flow employ a standard lubrication approximation,
which in turn leads to a nonlinear diffusion equation for the evolution of the ice
surface (Fowler & Larson 1978; Morland & Johnson 1980; Hutter 1983). The standard
boundary conditions that apply to an ice sheet whose edges rest everywhere on land
are that the ice thickness and ice flux vanish simultaneously. These conditions then
determine the evolution of the moving boundary of the ice sheet as well as of the ice
thickness in its interior.

In other words, when coupled with a suitable prescription for the rate at which
ice accumulates at the ice-sheet surface, the standard lubrication (or shallow-ice)
approximation for the flow of land-based ice sheets yields a closed model. No further
attention need be paid to the detailed mechanics of the ice-sheet margins (see also
Fowler 1977). Many mathematical challenges posed by this model are analogous to
those encountered in other thin-film flows involving contact lines and can be under-
stood in the framework of parabolic obstacle problems (e.g. Calvo et al. 2002). Other



28 C. Schoof

approaches include the study of similarity solutions (e.g. Nye 2000; Bueler et al. 2005)
and of steady-state surface profiles and their uniqueness and stability (in particular
when ice accumulation is dependent on surface elevation, in which case multiple
steady-state profiles are possible (see e.g. Fowler & Larson 1980; Wilchinsky 2001).

Marine ice sheets differ from their land-based counterparts because they rest on
bedrock below sea level, and their margins are located where the ice becomes thin
enough to float on the surrounding ocean waters. More precisely, this location is
known in glaciology as the grounding line, and it separates grounded ice from the
surrounding floating ice shelves. Unlike the grounded ice sheet, ice shelves experience
negligible tangential traction on their lower surfaces. As a result, their flow as
they spread under their own weight more closely resembles the flow of viscous jets
and membranes than the behaviour of a classical lubrication flow (Morland 1987;
MacAyeal & Barcilon 1988). Put another way, ice shelves flow as plug flows in which
stresses due to longitudinal stretching are dominant, whereas stresses due to vertical
shearing are dominant in grounded ice sheets.

The coupling between the two flows has important consequences for the grounded
part of a marine ice sheet. By analogy with the case of land-based ice sheets, a
marine-ice-sheet model which is able to predict grounding-line motion requires two
boundary conditions at the grounding line. One boundary condition, on the ice
thickness, derives naturally from the fact that the ice at the grounding line is at a
critical thickness at which it becomes afloat. It is worth underlining that, on its own,
this boundary condition is not sufficient to determine the motion of the grounding
line (note that claims to the contrary can be found in the glaciological literature, see
e.g. Hindmarsh 1996; Hindmarsh & LeMeur 2001; LeMeur & Hindmarsh 2001). The
obvious analogy here is with Stefan problems in heat conduction: There, temperature
satisfies a diffusion equation in the interior of a solid body and reaches a prescribed
value at its surface. An additional condition, the Stefan condition, is required to
determine the evolution of this free surface due to melting and solidification. For
the classical Stefan problem, this additional boundary condition can be determined
through simple considerations of conservation of energy. In the case of a marine
ice sheet, it must be determined in a rather more complicated way through the
mechanical coupling between sheet and shelf.

The importance of the transition zone between grounded and floating ice in
controlling the dynamics of marine ice sheets was pointed out over thirty years ago
by Weertman (1974). Nonetheless, there have been only a few serious attempts to con-
struct and solve mathematical models of the transition zone that are able to provide ef-
fective boundary conditions for the grounded part of the ice sheet. The main exponents
of this work have been Chugunov & Wilchinsky (1996) and Wilchinsky & Chugunov
(2001), who have based their model on the assumption that the grounded ice sheet
does not slide over its bed, while earlier attempts include those by van der Veen (1985)
and Herterich (1987). For steady two-dimensional ice sheets with constant viscosity,
the analysis of Chugunov & Wilchinsky yields an additional relationship between ice
thickness and ice flux at the grounding line. This supplies the missing Stefan-type
condition, which was later used by Wilchinsky (2001) to study the stability properties
of steady marine ice-sheet profiles. However, the applicability of their boundary
condition to the dynamic case is not immediately obvious, as the boundary-layer
problem solved by Chugunov & Wilchinsky (1996) presupposes a steady ice sheet.

Our concern in the present paper will be specifically with dynamic ice sheets which
are able to slide and, in fact, in which the sliding of ice is rapid compared with velocities
due to vertical shearing. There are two motivations for this approach. First, ice sheets
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Figure 1. Geometry of the problem: s is the surface elevation above sea level, h the ice
thickness and b the depth to the sea floor, while x is the horizontal position, x = xg denoting
the grounding line; u is the ice velocity.

typically are able to slide, and the dependence of the relevant boundary conditions at
the grounding line on the chosen parameterization of sliding is naturally of interest.
Secondly, the assumption that sliding is rapid allows us to employ a simplified, depth-
integrated, model for the flow of the coupled ice-sheet–ice-shelf system. As this model
is considerably simpler to solve than the full Stokes equations which feature in the
work of Chugunov & Wilchinsky, it is hoped that the present approach can fulfil a
didactic role in elucidating the basic structure of the transition problem.

The model used here, originally due to Muszynski & Birchfield (1987) and MacAyeal
(1989), has been employed in a number of numerical studies of coupled ice-sheet–ice-
shelf systems (e.g. Vieli & Payne 2005), the novelty in our paper being a consistent
approach using matched asymptotics. The idea of using the model to study ice-sheet–
ice-shelf transitions as a boundary-layer problem was developed independently by
Hindmarsh (2006), who also obtained some qualitative aspects of the boundary-layer
structure described in § 3.3 of paper.

In a companion paper, in preparation, we will present a more detailed derivation
of our model from first principles and extend our work to the case of ice sheets whose
interior is sliding at a rate comparable with the velocities caused by vertical shearing
in the ice, rather than rapidly. The analysis in the companion paper will necessarily
be more involved and is motivated to a great extent by the results obtained from the
simpler model below.

2. Model
We consider a two-dimensional symmetrical shallow marine ice sheet (figure 1) and

suppose that most of its flux is accounted for by sliding at the bed rather than by
shearing across the thickness of the ice. Let x denote the horizontal position in the
flow direction (with x =0 defining the axis of symmetry), let t denote time and let
subscripts x and t signify the corresponding partial derivatives, i.e. ux = ∂u/∂x etc. By
exploiting the symmetry of the ice sheet, we confine ourselves to x > 0 and denote the
position of the grounding line at time t by xg(t), where xg > 0. In addition, we assume
that there is a floating ice shelf which extends from the grounding line at x = xg(t) to
a calving front at x = xc(t), where ice breaks off from the shelf to form icebergs.

Let u be the ice velocity in the x-direction; it is independent of the depth in the
ice since we assume that the ice flows approximately as a plug flow. The symbol h

will denote the ice thickness, and b the depth of the sea floor below sea level, so the
ice-sheet surface elevation is at s = h − b above sea level for the grounded part of the
sheet. We assume that any contribution which the ice sheet makes to sea-level change
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is small compared with the depth of the bed b and that the bedrock underlying the
ice sheet is perfectly rigid. This allows us to prescribe b(x) as a function of position.

The model can then be cast in the following form:

2A−1/n
(
h|ux |1/n−1ux

)
x

− C|u|m−1u − ρgh(h − b)x = 0
ht + (uh)x = a

ρh � ρwb

⎫⎬
⎭ on x ∈ (0, xg), (2.1a, b)

2A−1/n
(
h|ux |1/n−1ux

)
x

− ρ(1 − ρ/ρw)ghhx = 0
ht + (uh)x = a

ρh < ρwb

⎫⎬
⎭ on x ∈ (xg, xc), (2.2a, b)

(h − b)x =0
u =0

}
at x = 0, (2.3a, b)

h, u, ux continuous at x = xg, (2.4)

2A−1/nh|ux |1/n−1ux − 1
2
(1 − ρ/ρw)ρgh2 = 0
u − vc(xc, u, h)= ẋc

}
at x = xc. (2.5a, b)

Here ρ and ρw are the densities of ice and water, respectively, while g is the acceleration
due to gravity and A> 0 and n � 1 are the usual parameters in Glen’s power-law
rheology for ice (Paterson 1994, chap. 5). The frictional shear stress at the base of the
ice is assumed to behave as C|u|m−1u, with C and m positive constants. With m = 1/n,
a friction law of this type arises when ice slides over rigid bedrock (Fowler 1981); in
this case C depends on the small-scale roughness of the ice sheet bed. The quantity
a is the rate at which ice accumulates owing to snowfall or is lost (owing to surface
melting if a is negative), and we assume that a is given as a function of position and
time.

The model represents the following physical components. Equations (2.1) and (2.2)
are depth-integrated versions of Stokes’ equations, valid for flows in which there is
little shear velocity across the thickness of the ice compared with the sliding velocities.
Specifically, the first equalities in (2.1) and (2.2) represent force balance, while the
second equalities represent conservation of mass. A derivation of these equations for
the grounded part of the ice sheet may be found in Muszynski & Birchfield (1987),
MacAyeal (1989) and Wilchinsky & Chugunov (2000), and for the floating ice shelves
in Morland (1987), MacAyeal & Barcilon (1988), MacAyeal (1996) and Weis, Grieve
& Hulter (1999). The inequality constraints in (2.1) and (2.2) signify that the ice
thickness in the grounded part of the ice sheet is greater than the thickness at which
flotation occurs, while the base of the ice shelf is above the sea floor. The boundary
conditions (2.3) are a simple reflection of the symmetry at the centre of the ice sheet.
Meanwhile, the continuity requirements (2.4) strictly speaking need to be justified
through a boundary-layer description of the transition from grounded to floating
ice, which will be supplied in the companion paper. (Note that these continuity
requirements differ from those predicted by Chugunov & Wilchinsky (1996), who
found a finite jump in u and h across the grounding line. The discrepancy arises
because of the assumed rapid sliding motion of the ice sheet in the present paper,
which contrasts with the no-slip boundary condition of Chugunov & Wilchinsky. As
we shall show in the companion paper, our continuity assumptions actually hold true
provided that sliding in the main part of the ice sheet is comparable with vertical
shearing and that m < 2/n.) Equation (2.2b) represents the rate of mass loss due to
iceberg calving at calving velocity vc at the edge of the ice shelf, where the dot on ẋc



Marine ice-sheet dynamics. Part 1 31

denotes an ordinary derivative with respect to t . Lastly, (2.5a) equates an imbalance
in hydrostatic pressures in water and ice, which arises because of the buoyancy of ice,
with depth-integrated axial deviatoric stresses in the ice in order to maintain force
balance (cf. Shumskiy & Krass 1976; Morland 1987).

To model the ice shelf, the calving velocity vc must be specified explicitly. In the
present paper, our interest is however entirely in the grounded part of the ice sheet,
and it turns out that we can exclude the ice shelf completely from consideration.
The idea behind this is based on a simple consideration of force balance and of
incipient flotation (cf. MacAyeal & Barcilon 1988). First, note that continuity in h at
the grounding line combined with the inequality constraints (2.1) requires that h is at
flotation at the grounding line, h = (ρw/ρ)b. Secondly, provided an ice shelf does exist,
we can integrate the (2.2a) from xc to xg and use the second boundary condition in
(2.2) as well as continuity in ux to find

h = (ρw/ρ)b,

2A−1/nh|ux |1/n−1ux = 1
2
(1 − ρ/ρw)ρgh2

}
at x = xg. (2.6a, b)

The boundary condition in (2.6a) is the obvious flotation condition. Equation (2.6b)
is a statement of horizontal force balance in the ice shelf: because the ice shelf is
buoyant in sea water, it has a tendency to spread out and thin, in much the same
way as a drop of oil tends to spread out on water. However, by contrast with that for
an unconfined drop of oil, the spreading of the shelf is unidirectional, that is, away
from the grounded shelf. In order to maintain force balance, the gravitational force
driving this spreading motion must then be balanced by a non-zero axial deviatoric
stress at the grounding line, as required by (2.6).

As an important aside, we note that the integration of (2.6) to yield a stress boundary
condition at the grounding line is possible here only because the problem is spatially
one-dimensional (in the sense that there is a single independent spatial variable,
x; the shelf is obviously physically two-dimensional). For more complicated, three-
dimensional, ice-shelf geometries (giving rise to a two-dimensional depth-integrated
model), the axial deviatoric stress at the grounding will in general differ from that
in (2.6) and must be found by solving a two-dimensional analogue of (2.2) (e.g.
MacAyeal 1987; Schoof 2006a).

Given the integration of the force balance in the shelf, which gives rise to (2.6), we
can now reduce the model for the grounded part of the ice sheet to (2.1), (2.3) and
(2.6). We may also note that neither condition in (2.6) makes use of velocity continuity
at xg . This additional jump condition does not affect the flow of the grounded sheet,
but provides an upstream boundary condition on the velocity field in the shelf.

Mathematically, the boundary conditions above may be interpreted as follows.
Equations (2.6b) and (2.3b) serve as boundary conditions for (2.1a), which for fixed
time t is second-order elliptic in u. The first equation in (2.3a) is an upstream boundary
condition for the advection-type problem represented by (2.1b). More accurately, a
consideration of characteristics shows that the system of partial differential equations
(2.1) is of mixed parabolic–hyperbolic type and requires one boundary condition on
each boundary for the parabolic part and initial conditions as well as an upstream
boundary condition for the hyperbolic part. The additional condition given by (2.6a)
then serves to determine the evolution of the free boundary xg(t).

In § 1, we stated that a parabolic equation is typically used to describe the evolution
of the ice-sheet surface. In the present model, a diffusion equation for h is obtained
if the axial deviatoric stresses represented by the first term in the first (force-balance)
equation in (2.1) are small. Importantly, however, the boundary condition (2.6)
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imposes a fixed value on this axial deviatoric stress, which suggests that this stress may
not be small at the grounding line. To explore the consequences of this observation
systematically, first of all we scale the model.

2.1. Non-dimensionalization

Suppose we know typical scales for the horizontal extent [x] of the ice sheet (given
for instance by the size of the continental shelf supporting the ice sheet or by the
distance over which a changes from accumulation to ablation) and the accumulation
rate [a]. We can then define scales [u], [h] and [t] for velocity, ice thickness and time
by writing

C[u]m = ρg[h]2/[x], [u][h]/[x] = [a], [t] = [x]/[u]. (2.7)

These yield the single dimensionless parameter

ε =
A−1/n([u]/[x])1/n

2ρg[h]
. (2.8)

Physically, ε represents the ratio of the axial deviatoric stress and the hydrostatic
pressure in the ice sheet and depends crucially on how large [u] is: very fast sliding
tends to correspond to larger ε.

In order to clarify the conditions under which our depth-integrated model is valid
in the first place, we can also define a scale [us] for the velocity difference between
bed and ice surface caused by shearing across the thickness of the ice by writing

A−1/n([us]/[h])1/n = ρg[h]2/[x]. (2.9)

As will be demonstrated in the companion paper, the model (2.1)–(2.6)is then valid
at leading order in the slip ratio [us]/[u], provided that [us]/[u] � 1 and [h]/[x] � 1,
which we assume to be the case.

Using the scales above, the model can then be scaled in the obvious way by
defining u = [u]u∗, h =[h]h∗, b = [h]b∗, etc. We drop the asterisks immediately, and
further introduce the material parameter

δ = 1 − ρ/ρw. (2.10)

This allows us to define a dimensionless flotation thickness hf through

hf (x) =
b(x)

1 − δ
. (2.11)

We then have the dimensionless model

4ε
(
h|ux |1/n−1ux

)
x

− |u|m−1u − h(h − b)x = 0
ht + (uh)x = a

h � hf

⎫⎬
⎭ on x ∈ (0, xg(t)), (2.12a–c)

(h − b)x = 0,

u= 0

}
at x = 0, (2.13a, b)

h = hf ,

|ux |1/n−1ux = δhf /(8ε)

}
at x = xg(t), (2.14a, b)

with initial conditions h(x, 0) = h0(x) for x ∈ (0, xg(0)), where xg(0) is given.
From (2.12), we see that the value of ε determines whether the ice sheet is essentially

a viscous jet (ε = O(1)) or a lubrication flow (ε � 1). In this paper, we assume the
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latter, so ε � 1. This is typically true of ice sheets and can be verified using some
simple scale estimates. With [a] = 0.1 m a−1 (1 a = 1 year = 3 × 107 s), [h] = 1000 m
and [x] = 106 m and using n= 3 and A= 6 × 10−24 Pa−3 s−1 (Paterson 1994, chap. 5),
we find ε = 4 × 10−4. The subsequent discussion will be concerned with the boundary-
layer structure engendered in the mathematical problem defined by (2.12)–(2.14) when
ε � 1.

3. Matched asymptotics
In the following, we will be concerned with the case ε � 1, while we treat δ as

an O(1) parameter: with ρ = 900 kgm−3, ρw =1000 kgm−3, we have δ = 0.1, while
ε ≈ 10−4 as previously estimated. Ignoring the O(ε) term in (2.12), we have the
straightforward leading-order outer problem

|u|m−1u= −h(h − b)x
ht + (uh)x = a

}
on x ∈ (0, xg). (3.1)

This yields for the ice velocity

u = −h1/m|(h − b)x |1/m−1(h − b)x (3.2)

and allows the evolution equation in (3.1) to be rewritten as the simple diffusion
equation

ht −
[
h1+1/m|(h − b)x |1/m−1(h − b)x

]
x

= a. (3.3)

The ice flux is therefore a function of the local ice thickness and surface slope, and
(3.3) is a variant of the classical lubrication or shallow-ice approximation for ice-
sheet flow (see also Fowler 1982). Specifically, (3.3) is the desired nonlinear diffusion
equation for ice thickness h.

Note that the prescription (3.2) for the ice velocity also satisfies the second boundary
condition in (2.13) at the centre of the ice sheet, provided that h satisfies the first
boundary condition in (2.13) However, putting ε = 0 is a singular perturbation, in
the sense that it does not allow the boundary conditions (2.4) to be satisfied at the
grounding line. In order to satisfy these, a boundary layer near x = xg is required. The
remainder of the paper will be concerned with the analysis of this boundary layer
and with the boundary conditions in the outer problem at the grounding line x = xg

which arise as a result.
Näıvely, one might expect a sensible boundary-layer structure to arise when the

ice thickness at the grounding line is comparable with the ice thickness inland in the
grounded sheet, and this is in fact implicit in some numerical studies of marine ice-
sheet dynamics (e.g. Hindmarsh & LeMeur 2001). However, as we shall demonstrate
in the next section, a matching of fluxes in the interior of the ice sheet with those at
the grounding line actually requires a small ice thickness at the grounding line. This
leads ultimately to the boundary-layer problem analysed in § 3.3 (the reader interested
primarily in the practical application of matched asymptotics to real ice sheets could
proceed directly to § 3.3). An analogous result was obtained previously by Wilchinsky
& Chugunov (2001), who found that the ice thickness at the grounding line must be
small compared with the ice thickness in the interior of the sheet.

3.1. Thick ice at the grounding line

In this section, we shall suppose that hf = O(1), i.e. the ice thickness at the grounding
line is comparable to the ice thickness inland. We rescale near the grounding line as
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follows:

h(x, t) = H (X, t),
u(x, t) = εαU (X, t),
xg − x = εβX.

⎫⎬
⎭ (3.4)

Note that xg in the definition of X depends on t , so the time derivative ht becomes

ht = Ht + ε−β ẋgHX, (3.5)

where the dot on ẋg denotes an ordinary time derivative and the subscript X again
indicates a partial derivative. With the rescaled variables above, (2.12a) and (2.14b)
become

4ε[n+α−β(n+1)]/n
(
H |UX|1/n−1UX

)
X

− εαm|U |m−1U + ε−βHHX + Hbx = 0, (3.6)

ε[n+α−β]/n|UX|1/n−1UX = −δhf /8 at X = 0, (3.7)

where we assume that the prescribed bed slope is such that bx = O(1) and we retain
bx as the relevant bed slope (i.e. we assume that significant variations in sea-floor
geometry occur only on the length scale [x] associated with the width of the ice sheet).
The obvious rescaling is then given by balancing the viscous and friction terms in
(3.6) and by balancing terms on both sides of (3.7). This leads to the choices

α = − n

m + 1
, β =

mn

m + 1
, (3.8)

which have the expected feature that α < 0 (corresponding to large ice velocities at the
grounding line compared with those inland) and β > 0 (corresponding to a boundary
layer of small horizontal extent compared with the size of the ice sheet). Equations
(2.12) and (2.14) then become

4
(
H |UX|1/(n−1)UX

)
− |U |m−1U + HHX + εmn/(m+1)Hbx = 0, (3.9)

εnHt + εn/(m+1)ẋgHX − (UH )X = εna, (3.10)

H (X, T ) � hf (xg − εmn/(m+1)X), (3.11)

for X ∈ (0, ε−mn/(m+1)xg), with

H = hf (xg),

|UX|1/n−1UX = −δhf /8, (3.12)

at X = 0. (Note that (xg − εmn/(m+1)X) in (3.11) is the argument of hf , not a factor.)
At leading order,

4
(
H |UX|1/n−1UX

)
− |U |m−1U + HHX =0

(UH )X =0
H � hf

⎫⎬
⎭ on X ∈ (0, ∞), (3.13a–c)

|UX|1/n−1UX = −δhf /8
H =hf

}
at X = 0, (3.14a, b)

where hf = hf (xg) is constant at leading order in the boundary layer.
Matching the inner and outer solutions requires that

h ∼ H,

u ∼ ε−n/(m+1)U

}
as x → x−

g , X → ∞, (3.15a, b)
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where the limits in x and X naturally imply limits taken in a matching region for
which 1 � X � ε−mn/(m+1), εnm/(m+1) � xg − x � 1. From (3.15), we require at leading
order that U → 0 while H remains finite as X → ∞. Since UH is constant for X > 0
from (3.13b), with H � hf > 0, this is only possible if U ≡ 0. Then, however, we have
a contradiction with (3.14a). Physically, the large axial deviatoric stress imposed on
the grounded ice at the grounding line demands a large ice velocity, which cannot
be supplied by the region upstream of the grounding line if ice thicknesses there are
comparable with the ice thickness at the grounding line itself.

The only way in which the inner problem can be successfully matched with the
outer problem is to also rescale the time t , by writing

t = εn/(m+1)T , (3.16)

where the time scale associated with T is fast compared with that associated with the
original outer time variable t . The only change in the leading-order inner problem is
that the second term in (3.10) now features, so (3.13b) is replaced by

[(U − x ′
g)H ]X = 0. (3.17)

The prime here denotes an ordinary derivative with respect to T . While (3.13b)
requires a constant flux in the boundary layer with respect to a fixed frame of
reference, (3.17) now demands constant flux in a frame travelling at the velocity of
the grounding line. This change allows matching with the outer solution. Specifically,
let

H∞ = lim
x→x−

g (T )
h(x, T ) = lim

X→∞
H (X, T ). (3.18)

It follows from (3.17) and the matching conditions (3.15) that

(U − x ′
g)H = −x ′

gH∞ = Q∞ for X > 0, (3.19)

and limX → ∞ U = 0 no longer implies that U ≡ 0. Physically, the quantity Q∞ defined
in (3.19) can be identified as the rate at which the ice sheet loses mass through the
grounding line. In what follows, it also represents a convenient mathematical proxy
for H∞ when x ′

g is given.

Using H = Q∞/(U − x ′
g) and HHX = (H 2)X/2, the (3.13a) can be rewritten as a

second-order ordinary differential equation in X:

4

(
Q∞

U − x ′
g

|UX|1/n−1UX

)
X

− |U |m−1U +
1

2

(
Q2

∞
(U − x ′

g)
2

)
X

= 0, (3.20)

with ‘initial’ conditions

|UX|1/n−1UX = −δhf

8
,

Q∞

U − x ′
g

= hf , (3.21a, b)

at X = 0. In addition, we require the solution to match with the outer problem, so
that

U → 0 as X → ∞. (3.22)

Equation (3.20) combined with (3.21a, b) and (3.22) essentially constitute a nonlinear
degenerate eigenvalue problem with Q∞ as the eigenvalue. For a given set of initial
conditions (3.21), (3.20) can be solved to give U as a function of X, but in general
this solution may not satisfy the matching condition (3.22). We anticipate that for
fixed values of the parameters x ′

g and hf appearing in (3.20) and (3.21), successful
matching is only possible for specific values of Q∞ = −x ′

gH∞.
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Figure 2. Phase plane for the system (3.24), with δ = 0.1, n= 3, m= 1/3, Q∞ = 20, x ′
g = −1.

Phase-trajectory directions are indicated by arrows, and separatrices approaching (−x ′
g, 0) at

large X are shown as heavy solid lines. The hyperbola W = δQ/(8Hf ) is plotted as a dashed
line, heavy in the ‘allowed’ domain V > −x ′

g .

In order to analyse this problem, observe that (3.20) can be rewritten as a pair of
autonomous coupled first-order ordinary differential equations. We introduce

V = U − x ′
g, W = −|UX|1/n−1UX. (3.23)

Then

VX = −|W |n−1W,

WX =
Q∞|W |n−1W

4V 2
−

V |V + x ′
g|m−1(V + x ′

g)

4Q∞
− |W |n+1

V

⎫⎬
⎭ on X ∈ (0, ∞), (3.24)

W =
δhf

8
, V =

Q∞

hf

at X = 0, (3.25)

V → −x ′
g

W → 0

}
as X → ∞. (3.26)

To proceed further, take x ′
g and Q∞ to be fixed. Since H∞ = Q∞/(−x ′

g) > 0, there
are then two scenarios to consider: either Q∞ > 0, x ′

g < 0 or vice versa. From (3.21b),
we can identify these cases with those of positive and negative ice velocities at the
grounding line, respectively; we have x ′

g = −hf U (0)/(H∞ −hf ) and, with H∞ > hf > 0,
x ′

g is opposite in sign to the velocity U (0) at the grounding line. (Incidentally,
x ′

g = −hf U (0)/(H∞ − hf ) takes the form of a Rankine–Hugoniot condition: because
U (∞) = 0, x ′

g = −hf U (0)/(H∞ − hf ) = [H∞U (∞) − hf U (0)]/[H∞ − hf ] = [HU ]∞
0 /[H ]∞

0

in an obvious notation.)
Regardless of whether x ′

g is positive or negative, the point (−x ′
g, 0) in the (V, W )-

plane is a degenerate saddle, as shown in the phase portraits in figures 2 and 3. In
each case, there are precisely two trajectories (or separatrices) approaching (−x ′

g, 0)
for large X, one from above the V -axis and one from below (plotted as heavy solid
lines in figure 2). In addition, there are two further trajectories which emerge from
(−x ′

g, 0) in such a way that (V, W ) → (−x ′
g, 0) for X → −∞ (and which are therefore

of no concern here). In order to satisfy the matching condition (3.26), the solution of
(3.24)–(3.26) must therefore follow one of the two separatrices which approach the
saddle point for large X.
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Figure 3. Same as figure 2, but with δ = 0.1, n= 3, m= 1/3, Q∞ = −1, x ′
g = 1. The hyperbola

W = δQ/(8Hf ) is again shown as a dashed line, the ‘allowed’ domain now being V < −x ′
g .

The heavy dashed line does not intersect either of the phase paths (drawn as heavy solid
lines), which approach (−x ′

g, 0) for large X.

The behaviour of these separatrices near the saddle point can be determined
explicitly. From (3.24), phase paths satisfy

dW

dV
= − Q∞

4V 2
+

V |V + x ′
g|m−1(V + x ′

g)

4Q∞|W |n−1W
+

W

V
. (3.27)

The local form of the separatrices close to the saddle point (−x ′
g, 0) can be found by

looking for solutions of the form V = −x ′
g + v, W = C|v|ν−1v for small v, where the

constants C and ν > 0 are to be determined. Assuming m < n, which is typically the
case, we find that

W ∼
(

(n + 1)| − x ′
g|

4Q∞(m + 1)

)1/(n+1)

|V + x ′
g|(m+1)/(n+1)−1(V + x ′

g) (3.28)

for separatrices approaching the saddle point. The observation that will become
important in what follows is this: from (3.28), it is clear that the separatrix which
lies above the V -axis corresponds to V > −x ′

g , while the separatrix below the V -axis
has V < −x ′

g . As the phase portraits in figures 2 and 3 show, this appears to be true
globally, and not just close to the saddle point. Furthermore, it is clear that the shape
of the separatrices can depend only on the parameters m, n, δ, Q∞ and x ′

g appearing
in (3.24)–(3.26).

It remains to impose the initial conditions (3.25), which requires us to distinguish
between the different possible signs for Q∞. We consider first the physically more
intuitive case Q∞ > 0, x ′

g < 0, corresponding to mass loss from the ice sheet at the
grounding line. This is illustrated in figure 2. In order to satisfy the initial conditon, the
point (Q∞/hf , δhf /8) must lie on one of the separatrices. Since δhf /8 > 0 for hf > 0,
this must be the separatrix above the V -axis. If we keep Q∞ fixed while hf varies, the
locus of points (Q∞/hf , δhf /8) traces a hyperbola of the form W = δQ∞/(8V ) in the
(V, W )-plane, and the point of intersection between the separatrix and the hyperbola
defines the point corresponding to the appropriate initial conditions. However, as we
require hf � H∞ = Q∞/(−x ′

g) and V =Q∞/hf , only that part of the hyperbola which
lies to the right-hand side of V = −x ′

g is of interest (plotted as a heavy broken line in
figure 2). For the case Q∞ > 0, there is clearly a single point of intersection between
the ‘allowed’ part of the hyperbola and the separatrix, and the W -coordinate Wf of
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Figure 4. Contour plots of x ′
g = −vg against H∞ and H∞ − hf . Note the logarithmic scale

on the vertical axis. The solid-line contour levels are also spaced logarithmically from −10−3

(bottom right) to −10−4 (top left). The dashed line is H∞ −hf = H∞, and indicates the boundary
of the domain of x ′

g as we must have hf > 0 (there is another domain boundary at H∞ −hf = 0,
as we must also have H∞ > hf ).

that point gives us the unique value hf = 8Wf /δ, which corresponds to the given Q∞,
x ′

g , m, n and δ.
We can repeat this procedure for Q∞ < 0, corresponding to the case where ice

flows into the grounded ice sheet from beyond the grounding line. Again, we have
to look for points of intersection between the hyperbola given by (Q∞/hf , δhf /8)
and the separatrix emerging from (−x ′

g, 0) into the upper half-plane. The inequality
hf � H∞ = Q∞/(−x ′

g) now constrains us to that part of the hyperbola W = δQ∞/(8V )
which lies to the left of V = −x ′

g . However, the separatrix above the V -axis lies to the
right of V = −x ′

g . Consequently, the allowed part of the hyperbola does not intersect
the separatrix, as also indicated in figure 3. There are no physically acceptable
solutions for which there is a grounding line advance, and ice must flow out of the
grounded ice sheet through the grounding line, as may be expected intuitively.

For x ′
g < 0 and given material parameters m, n and δ, the boundary-layer problem

therefore furnishes a relationship between hf , Q∞ = −x ′
gH∞ and x ′

g , which in general
can only be evaluated numerically. As we shall see shortly, what we require in the
outer problem is this relationship in the form

x ′
g = −vg(H∞, hf ), (3.29)

giving the rate of grounding-line migration as a function of the parameters H∞ and
hf . In figure 4 we present contour plots of x ′

g for a particular set of parameter values.
These plots illustrate that vg is clearly a single-valued function which increases with
both H∞ and hf (as, for a given H∞, contour levels decrease with H∞ − hf ).

3.2. Thick ice at the grounding line: the outer problem

Next, we consider the outer problem corresponding to the boundary-layer description
in § 3.1. Recall that a rescaling in time to a fast time variable T = ε−n/(m+1)t was
required in order to match the large fluxes in the boundary layer with the outer
problem. When we rescale the outer problem (3.3) accordingly, we obtain

hT − εn/(m+1)
[
h1+1/m|(h − b)x |1/m−1(h − b)x

]
x

= εn/(m+1)a, (3.30)
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where the subscript T again denotes a partial derivative. At leading order, we therefore
have the uninspiring statement

hT = 0. (3.31)

Owing to the fast time scale imposed by the inner problem, the ice-sheet profile is
stagnant at leading order and we simply have h(x, T ) = h0(x), as given by the initial
condition. The only evolving quantity in the outer problem is therefore the grounding
line xg , whose motion is given by (3.29). The right-hand side of (3.29) contains the
arguments H∞ and hf . From (3.18), it is straightforward to identify H∞ = h0(xg(T ))
as the initial ice thickness at position xg , while hf = hf (xg(T )) is given by the shape
of the sea floor there, through (2.11). In general, H∞ and hf will differ, owing to an
O(1) change in ice thickness across the boundary layer.

Physically, the outer problem describes the rapid disintegration of the ice sheet (on
the T time scale) through mass loss at the grounding line. This interpretation is borne
out by numerical solutions of the original problem (2.12)–(2.14) with sufficiently large
hf (see figure 8). Of course, the outer problem above is physically nonsensical as there
is no reason why such an ice sheet should exist in the first place. In other words, a
marine ice sheet which is able to persist on its natural (t) time scale cannot have a
flotation height hf which is O(1).

There is, however, a natural remedy for this. In the outer problem above, the rate of
grounding-line retreat tends to zero as hf does (see figure 3). Thus, for small hf , the
outer problem above predicts an essentially completely stagnant ice sheet on the fast
T time scale, which suggests that a rescaling in time is again required, depending on
how small hf is. In addition, small hf values also suggest a rescaling in h (and hence
u) near the grounding line from the case considered above, and this in turn affects
the matching with the outer flow. Below, we consider the case of a grounding-line
thickness hf which is small enough that the natural time scale recovered is the original
t time scale, which also implies that grounding-line migration and the evolution of the
ice sheet outside the boundary layer occur on the same time scale (so we no longer
have the rapid retreat of the grounding line into a stagnant ice sheet).

3.3. Small ice thickness at the grounding line

As we have seen, the main problem in trying to force hf to be O(1) is that this
implies large ice fluxes at the grounding line, which accounts for the rapid retreat
of the grounding line. Below, we consider a distinguished limit which corresponds
to O(1) ice fluxes at the grounding-line as well as to small ice thicknesses there, so
that the marine ice sheet must be located in a relatively shallow ocean. Specifically,
we put hf = εγ Hf for an appropriately chosen γ > 0 (which dictates how thin the
ice at the grounding line must be for a given ε) and suppose that Hf = O(1) in the
asymptotic limit ε → 0. We emphasize that, as before, the (scaled) flotation thickness
Hf (x) depends on position, as a result of the varying depths of the sea floor below
sea level. We merely assume that these depths are small compared with the natural
thickness scale of the ice sheet.

We rescale near the grounding line as follows:

h(x, t) = εγ H (X, t),
u(x, t) = εαU (X, t),
xg − x = εβX,

⎫⎬
⎭ (3.32)

where α and β may be different from their values in § 3.1 and γ = −α, so that
the rescaled flux εα+γ UH in the boundary layer remains O(1). In addition, we
also recognize that if the flotation thickness hf ∼ εγ then the depth to the sea floor,
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b =(1−δ)hf , must also be small, with b ∼ εγ . Hence we rescale b(x) = εγ B(x). However,
we also assume that the rescaled depth to sea floor B only varies significantly on
the outer length scale associated with the original spatial variable x and retain Bx

as the relevant derivative when we rescale (2.12a–c), based on the assumption that
Bx = O(1).

The rescaled versions of (2.12) and of the second equality in (2.14) are then

4ε1+α/n−β/nεγ −β
(
H |UX|1/n−1UX

)
X

− εαm|U |m−1U + ε2γ −βHHX + ε2γ HBx = 0, (3.33)

4ε1+α/n−β/n|UX|1/n−1UX = −δεγ Hf /8 at X = 0. (3.34)

The required rescaling must balance the first two terms in (3.33), in order to describe
the decay of the axial deviatoric stress over the boundary layer, and both sides of
(3.34) in order to allow the boundary conditions at the grounding line to be satisfied.
Equating the relevant exponents of ε in (3.33), (3.34) and enforcing α = −γ yields the
distinguished limit

α = − n

n + m + 3
, β =

n(m + 2)

n + m + 3
, γ =

n

n + m + 3
. (3.35)

With these choices of α, β and γ , the scaled problem becomes

4
(
H |UX|1/(n−1)UX

)
− |U |m−1U + HHX − εn(m+2)/(n+m+3)HBx = 0, (3.36)

εn(m+3)/(n+m+3)Ht + εn/(n+m+3)ẋgHX − (UH )X = εn(m+2)/(n+m+3)a (3.37)

for X ∈ (0, ε−n(m+2)/(n+m+3)xg), with

H =Hf ,

|UX|1/n−1UX = −δHf /8,

}
(3.38)

at X =0.
Ignoring higher-order terms in ε, the boundary-layer problem becomes

4
(
H |UX|1/n−1UX

)
− |U |m−1U + HHX = 0

(UH )X = 0
H � Hf

⎫⎬
⎭ on X ∈ (0, ∞) (3.39a–c)

H = Hf

|UX|1/n−1UX = −δHf /8

}
at X = 0, (3.40)

where Hf = Hf (xg) is again constant at leading order. Matching with the outer
solution now requires that

uh ∼ UH,

u ∼ ε−n/(n+m+3)U

h ∼ εn/(n+m+3)H

⎫⎬
⎭ as x → x−

g (t), X → ∞. (3.41)

By analogy with (3.13b) and (3.15b), the inner solution has U → 0 while UH = Q

remains constant on account of (3.39). Following the same argument as before, it
is clear that Q �=0 since Q = 0 does not allow the second equality in (3.40) to be
satisfied. However, by contrast with § 3.1, this no longer presents a problem as the
matching conditions (3.41) allow for H to diverge as X → ∞.
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Figure 5. Phase plane for the system (3.46), with δ = 0.1, n= 3, m= 1/3, Q = 5. Phase path
directions are indicated with arrows, and the separatrix approaching the origin from the first
quadrant at large X is shown as a heavy solid line. The hyperbola W = δQ/(8U ) is shown as
a dashed line.

Again, we exploit H = Q/U to rewrite (3.39a) as a nonlinear ordinary second-order
differential equation analogous to (3.20):

4

(
Q

U
|UX|1/n−1UX

)
X

− |U |m−1U +
1

2

(
Q2

U 2

)
X

= 0 on X ∈ (0, ∞), (3.42)

subject to ‘initial’ conditions

|UX|1/n−1UX = −δHf /8, U = Q/Hf , at X = 0, (3.43)

and with

U → 0 as X → ∞. (3.44)

The resulting eigenvalue problem for Q is analogous to that for Q∞ in § 3.1. Again,
we can shift to a phase plane by defining

W = −|UX|1/n−1UX. (3.45)

Then

UX = −|W |n−1W

WX =
Q|W |n−1W

4U 2
− |U |m+1

4Q
− |W |n+1

U

⎫⎬
⎭ on X ∈ (0, ∞), (3.46)

U = Q/Hf

W = δHf /8

}
at X = 0 (3.47)

(U, W ) → (0, 0) as X → ∞. (3.48)

As we shall show in the next section, we must have a non-negative flux Q,
which therefore leaves Q > 0 as Q �=0. Moreover, from the inequality in (3.39),
H (X, t) � Hf > 0 for all X > 0. Hence it follows that U > 0 throughout the boundary
layer. Since U → 0 for large X, (U, W ) must therefore follow a trajectory which
approaches the origin from the first quadrant of the (U, W )-plane. As before, the
origin is a degenerate saddle and, as shown in the phase portrait in figure 5, there is a
unique trajectory such that (U, W ) → 0 from the first quadrant as X → ∞. The shape
of this trajectory depends only on the parameters Q, m, n and δ appearing in (3.46)
and (3.47) and, as before, one can look for a local form W ∼ CUν wih W , U small.
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Figure 6. Grounding-line flux Q as a function of the scaled grounding-line thickness Hf for
n= 3, m= 1/3, δ = 0.1. For the range of values of Hf shown, Q is within a fractional error of

less than 10−3 of the asymptotic form (3.51).

This yields

W ∼ U (m+3)/n

Q2/n
. (3.49)

In order also to satisfy the initial conditions (3.43), we see that the point
(Q/Hf , δHf /8) must again lie on the separatrix. When Q is kept constant while
Hf is varied, the locus of points of the form (Q/Hf , δHf /8) again traces a hyperbola,
as shown in figure 5. For a given flux Q, the U -coordinate Uf of the intersection
of that curve with the separatrix defines the corresponding value of Hf through
Hf = Q/Uf . As the phase plot in figure 5 strongly suggests, there appears to be a
unique thickness Hf for a given Q. By analogy with the discussion in § 3.1, we therefore
obtain a relationship between the scaled flotation thickness Hf and the flux Q at the
grounding line in the outer problem, which we write here in the form Q = qg(Hf ).
This relationship then serves as a boundary condition on the outer problem (3.3) at
the grounding line and, as we shall see in the next section, it supplies the missing
Stefan-type condition necessary to predict the evolution of the grounding line in time.

It is even possible to find the behaviour of qg(Hf ) explicitly for small Hf . Using
(3.49), we obtain

δHf

8
=

(Q/Hf )(m+3)/n

Q2/n
, (3.50)

or equivalently

Q = (δ/8)n/(m+1)H
(m+n+3)/(m+1)
f . (3.51)

It is worth pointing out that Hindmarsh (2006) has independently deduced some of
the qualitative features of the boundary-layer problem above. Based on monotonicity
arguments, he demonstrates that for a given grounding-line thickness hf , only a
restricted range of fluxes can be possible. The novelty here is that we are able to show
that there is in fact a single flux qg(Hf ) corresponding to hf and that we furnish an
explicit way of calculating qg(Hf ). Moreover, the scaling for h in the boundary layer
is novel in this paper, demonstrating explicitly that the ice thickness at the grounding
line must be small in order to match successfully to the outer problem.

For more general Hf , qg can only be computed numerically, and an example
for a particular choice of the parameters m and n is shown in figure 6. As one
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would expect, qg(Hf ) is single-valued, positive and monotonically increasing in Hf

for Hf > 0: the ice flux at the grounding line increases rather than decreases, with
water depth. Notably, the numerically calculated form of qg agrees very closely with
the asymptotic form (3.51) valid for small Hf . (This can probably be explained by
the fact that δ = 0.1 is relatively small; as shown in Appendix A.1, (3.51) is also valid
for Hf ∼ O(1) provided that δ � 1). Moreover, numerically, qg diverges as Hf tends
to infinity. This is in line with the result of § 3.1: for large Hf , we expect fluxes at the
grounding line that are large compared with fluxes inland.

3.4. The outer problem for a marine ice sheet: steady profiles

Next, we turn our attention to the outer problem which corresponds to the boundary-
layer problem discussed in § 3.3. Recall that we set b = εn/(n+m+3)B in order to account
for the shallow depths of the sea floor. Rescaling (3.3) accordingly and retaining only
leading-order terms, this leaves the simpler expression

ht −
(
h1/m+1|hx |1/m−1hx

)
x

= a (3.52)

for x ∈ (0, xg), with

hx = 0, (3.53)

at x = 0.
Meanwhile, the matching conditions (3.41) with UH = Q yield the boundary

conditions

h(xg(t), t) = 0, lim
x→x−

g (t)
−h1/m+1|hx |1/m−1hx = Q, (3.54a, b)

at x = xg . In order to ensure non-negative h near xg , it follows from these boundary
conditions that we must have hx � 0 and hence Q � 0, as previously claimed. The
boundary condition in (3.54a) dispenses with the flotation condition at the grounding
line in favour of zero ice thickness at leading order. This is obviously the result of
having small ice thickness at the grounding line. The shape of the sea floor and hence
the function hf now enter the problem solely through the second (flux) boundary
condition in (3.54). The inner problem supplies Q as a function of the scaled flotation
thickness Hf through

Q(xg) = qg(Hf (xg)) = (δ/8)n/(m+1)[Hf (xg)]
(m+n+3)/(m+1), (3.55)

where we have assumed the asymptotic form of qg in (3.51).
In other words, the assumed shallow shape of the ice-sheet bed affects the ice-flow

problem at leading order only by prescribing a flux at the grounding line. This flux
is a function of the position of the grounding line through (3.55). As in the case of a
land-based ice sheet, we obtain again a degenerate diffusion equation, the degeneracy
arising because the diffusion coefficient vanishes when h does. This occurs at leading
order at the moving boundary x = xg(t) of the domain. The marine ice-sheet case
therefore differs from the land-based one because the ice flux uh at the grounding line
is non-zero, being determined instead by the prescribed (scaled) flotation thickness
Hf through the function qg in (3.55).

Next, we consider the simpler steady-state problem. Omitting time derivatives, we
have

(uh)x = a, u = −h1/m|hx |1/m−1hx on x ∈ (0, xg), (3.56)

hx = 0 at x = 0, (3.57)
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h = 0, lim
x→x−

g

uh = qg(Hf (xg)) at x = xg, (3.58a, b)

where a is independent of t . We reiterate that (3.56)–(3.58) is a free-boundary problem
because the grounding-line position xg is not known a priori but must be found as
part of the solution.

From (3.56) and (3.57), it is straightforward to show that the flux at a position
x equals the total rate of ice accumulation upstream of that point (see also Fowler
1997, chap. 18). Denoting this by s(x), we have

u(x)h(x) = s(x) :=

∫ x

0

a(x ′) dx ′. (3.59)

From (3.58b) the grounding-line position xg is therefore determined implicitly through

s(xg) =

∫ xg

0

a(x ′) dx ′ = qg(Hf (xg)). (3.60)

Given a solution xg , the ice-surface profile can then be computed from

−h1/m+1|hx |1/m−1hx = s on x ∈ (0, xg), h(xg) = 0. (3.61)

Hence

hm+1hx =
1

m + 2
(hm+2)x = −|s|m−1s. (3.62)

Together with h(xg) = 0, this can be solved to give

h(x) =

[
(m + 2)

∫ xg

x

|s(x ′)|m−1s(x ′) dx ′
]1/(m+2)

, (3.63)

where we also require h � 0 in (0, xg) as before.
The solvability of the steady ice-sheet problem thus depends on the transcendental

equation (3.60) having a solution, which determines the position of the free boundary
xg . Further, the solution must be such that (3.63) predicts positive ice thicknesses
(note that this is always the case provided that s > 0 in (0, xg)).

In other words, the existence of steady ice sheet profiles depends in a non-
trivial way on the accumulation rate a(x) and on the shape of the sea floor,
which in turn determines Hf (x) (recall that Hf = ε−n/(n+m+3)b/(1 − δ) is simply a
scaled form of the depth b of the sea floor). Provided that solutions do exist, the
corresponding grounding-line positions and surface profiles are straightforward to
calculate numerically from (3.60) and (3.63).

A particular example is given in figure 7. The shape of the sea floor chosen here
for illustration purposes takes the form

Hf (x) = 10 − 5x2 + 5x4/4, (3.64)

as shown in the centre panel of figure 7. With this choice, there is a shallow ‘sill’ in
the sea floor around x = 1.4 a somewhat deeper central region around the centre of
the ‘continental shelf’ around x = 0 and a sharp drop-off around x = 2.5.

We chose this profile to illustrate the possibility of multiple steady solutions and
also because the sea floor in West Antarctica has a qualitatively similar shape, with
a depression at the centre of the ice sheet and a shallower sill at the continental
shelf edge. With a constant accumulation rate a =1, s(x) = ax on the left-hand side
of (3.60) is monotonically increasing in x with s(0) = 0 (see figure 7c). Meanwhile, the
right-hand side has Q(0) = qg(Hf (0)) > 0 as Hf (0) > 0; Q(x) = qg(Hf (x)) decreases
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Figure 7. Steady ice-sheet configurations (a) for parameter values δ = 0.1, m= 1/3, n= 3,
a = 1, with Hf given by (3.64). (b) The shape of the sea floor, −B(x) = −(1 − δ)Hf (x), with
bedrock shaded in dark grey and ocean shaded light grey. Steady margin positions xg occur
at points of intersection of the graphs of s(x) and Q(x) = qg(Hf (x)), shown in (c) as dashed
and solid lines, respectively. The margin positions are marked by vertical solid lines. For
grounding-line positions between these vertical lines we have Q<s, i.e. accumulation exceeds
outflow and the ice sheet should grow away from the smaller steady surface profile and towards
the larger one. If the conjectures leading up to (3.66) are correct then the dashed shape in
(a) is an unstable configuration: a slightly larger ice sheet will grow while a slightly smaller
one would shrink. Note that the grounding line for the dashed shape is at a position where
the bed slopes upwards. The solid line in (a) should correspond to a stable shape.

with x to the left-hand side of the sill, where Hf decreases with x, while Hf (x) and
hence Q(x) = qg(Hf (x)) increase with x to the right-hand side of the sill. With the
particular choice of Hf above, this results in the graphs of s(x) and qg(Hf (x)) having
two points of intersection, whose abscissae correspond to steady-state grounding-line
positions xg (figure 7c). Hence there are two distinct steady profiles. One of these,
shown as a dashed line in figure 7(a), has its grounding line at xg = 0.7609, which is
upstream of the sill in a region where the sea floor is upward-sloping (i.e. H ′

f < 0, as
Hf measures the depth below sea level), while the other has its grounding line beyond
the sill at xg = 1.957, where the sea floor is downward-sloping (H ′

f > 0).
Given multiple steady-state solutions, a relevant question is whether a given steady

ice-sheet configuration is stable. This underpins the problem of marine ice-sheet
instability identified by Weertman (1974).

A full linear stability analysis of steady solutions of the model (3.52)–(3.55) is
beyond the scope of this paper, owing in part to the complexities introduced by the
degeneracy of the problem (see also Fowler 2001; Wilchinsky 2001; Wilchinsky &
Feltham 2004). Nonetheless we observe the following: as in the numerical example in
figure 7, suppose that a is positive everywhere, which is relevant to cold continents
such as Antarctica (but less so for ice sheets in warmer regional climates, such as
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Greenland). Consider the total mass balance of the ice sheet when the grounding
line is displaced slightly from its steady-state position xg to a perturbed position
xg + ∆xg . The total rate of ice accumulation on the grounded sheet then changes to

s(xg +∆xg) =
∫ xg+∆xg

0
a(x ′) dx ′, while the rate of mass loss through the grounding line

changes from qg(Hf (xg)) = s(xg) =
∫ xg

0
a(x ′) dx ′ to qg(Hf (xg + ∆xg)). The net rate at

which the ice sheet gains mass with its grounding line in the perturbed position is
therefore∫ xg+∆xg

0

a(x ′) dx ′ − qg(Hf (xg + ∆xg)) ≈ [a(xg) − q ′
g(Hf (xg))H

′
f (xg)]∆xg. (3.65)

On the right-hand side we have linearized the changes in s and qg and used the
fact that

∫ xg

0
a(x ′) dx ′ − qg(Hf (xg)) = 0 at the steady-state grounding-line position xg .

Heuristically, one might expect a steady profile to be stable if a small increase in ice
sheet width (∆xg > 0) leads to a decrease in net mass balance, which should cause
the ice sheet to shrink back to its original size (see also Wilchinsky 2001, § 4). In other
words, one might expect

H ′
f (xg) > a(xg)/q

′
g(Hf (xg)) (3.66)

as a stability criterion. Since we are assuming that a(xg) > 0 and that qg is an
increasing function, stability should require a sea floor which is sloping downwards
sufficiently steeply at the grounding line, so that the flotation thickness Hf is a
sufficiently rapidly increasing function of downstream position. If correct, this confirms
Weertman’s (1974) conjecture regarding marine ice-sheet instability for ice sheets with
upward-sloping beds.

Graphically, steady-state margin positions xg correspond to points of intersection
between the graphs of s(x) =

∫ x

0
a(x ′) dx ′ and qg(Hf (x)) as functions of x (see

figure 7c). According to (3.66), stable margin positions should then correspond to
positions where the graph of qg(Hf (xg)) crosses that of s(xg) from below. Taking this
result at face value, we expect the solution shown as a dashed line in figure 7(a) to be
unstable while the solid line, whose grounding line is in a region where the sea floor is
downward-sloping, should represent a stable steady state. This is of course simplistic
(but notably agrees with the results of Wilchinsky 2001), and a full stability analysis
remains to be done. However, the numerical results in the next section go some way
to confirming our conjectures.

4. Numerical results
One of the advantages of the model (2.12)–(2.14) is that it can be solved numerically

to provide validation of our asymptotic results. To deal with the moving boundary,
we map first to a fixed domain (0, 1) in the coordinates (σ, τ ) by putting σ = x/xg ,
τ = t (e.g. Crank 1984). The transformed equations are then discretized using finite
differences with a staggered grid for u and h. The first equation in (2.12) is discretized
using centred differences, while an upwind scheme with a backward Euler step is used
for the second (evolution) equation in (2.12). The fully implicit time step also facilitates
direct implementation of the flotation condition in (2.14), rather than reliance on a
differentiated version which determines the rate of grounding-line migration, as is
done in e.g. Vieli & Payne (2005).

In figures 8 and 9, we present results relevant to the two different boundary-layer
descriptions studied in § 3.1 and 3.3. Figure 8 shows a numerical solution computed
for a marine ice sheet with an O(1) flotation thickness. As predicted by the analysis
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Here hf = 1/2 and a =1 are independent of position. The parameter values used are n= 3,

m= 1/3, δ = 0.1, ε = 5 × 10−5. Ice sheet surface profiles are shown at time intervals of 2 × 10−5,
starting with a parabolic profile with xg = 2. The upper horizontal line indicates sea level, with
bedrock shaded dark grey and ocean at its minimum extent shaded light grey. Numerically,
the ice sheet disappears in finite time and is almost stagnant upstream of the moving boundary
layer near the grounding line.
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Figure 9. Solution of (2.12)–(2.14) with the same ice sheet bed as is assumed in
figure 7. The parameter values are n= 3, m= 1/3, δ = 0.1, ε = 5 × 10−5, while a = 1 and
hf (x) = b(x)/(1 − δ) = εn/(n+m+3)(10 − 5x2 + 5x4/4). (a, b) Ice sheet surface profiles at time
intervals of 0.1, starting with initial profiles close to the dashed profile in figure 7(a). The
horizontal line indicates sea level, while the bedrock is shaded dark grey and the minimum
ocean extent light grey. (c) The previously calculated steady-state profiles from figure 7.

in § 3.2, the ice sheet remains essentially stagnant upstream of a narrow boundary
layer at the moving grounding line and rapidly loses mass through the grounding
line. Numerically, the ice sheet shrinks to zero size in finite time.
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Figure 10. The flux u(xg)h(xg) at the grounding line, computed as part of the numerical
solutions shown in figure 9 and plotted as solid lines against hf (xg); the corresponding flux

qg(Hf ) as shown in figure 6 is plotted as a broken line, with Hf = ε−n/(n+m+3)hf . The vertical
parts of the solid lines represent a transient in which the surface profile in the boundary
layer adjusts to ensure a locally constant flux. Specifically, the initial ice-surface profile in the
boundary layer may not satisfy the steady boundary-layer problem in § 3.3. In this case, the
ice surface in the boundary layer will relax to the shape predicted by the steady-state problem
(3.39)–(3.41) over a time scale that is fast compared with the t time scale. The vertical parts
of the solid lines correspond to the changes in flux that accompany this relaxation. After the
transient, the solid lines agree relatively closely with the broken line.

Figure 9 shows results for the physically more relevant case of a small flotation
thickness, as considered in §§ 3.3 and 3.4. The parameter values and choices for a and
hf are the same as those used in the computation of the steady-state profiles in figure 7,
and steady-state profiles based on the solution of (3.60) and (3.63) are plotted in
figure 9(c).

The main unresolved issue relating to these steady-state profiles was whether they
were stable. Recall that a simple mass-balance argument suggests that the smaller
steady profile, shown as a dashed line in figure 9(c), should be unstable, while the
larger profile should be stable. Our numerical solutions do indeed suggest that this is
the case: the solution in figure 9(a) is based on an initial ice sheet close in shape to but
slightly smaller than the dashed profile in figure 9(c). As suggested by the argument at
the end of § 3.4, the ice sheet evolves away from this initial profile. In fact, numerically,
the ice sheet again shrinks to zero size in finite time. Meanwhile the solution shown
in figure 9(b) has an initial shape which is close to but slightly larger than the
dashed steady-state solution in figure 9(c) In this case, the ice sheet grows until it
relaxes to a steady surface profile close to that shown as a solid line in figure 9(c),
which we had previously speculated to be stable.

Clearly, these results lend some weight to the stability argument of § 3.4, and
also indicate that the reduced model (3.52)–(3.55) captures the behaviour of (2.12),
(2.13) for small ε. Further support for our asymptotic results is provided by the
numerically computed ice fluxes at the grounding line, which closely match the form
of qg predicted by our asymptotic results (figure 10).

5. Discussion
This paper has been concerned with finding boundary conditions for marine ice

sheets. The basic problem addressed is the following (see also Wilchinsky 2001).
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In order to construct a well-posed model for a marine ice sheet with a moving
margin, two independent boundary conditions are required at the grounding line.
One condition on the ice thickness arises naturally from the fact that the grounding
line represents the location where the ice becomes afloat. Hence the ice thickness
at the grounding line is fixed by the depth of the sea floor. This leaves a second
condition to be determined.

Notwithstanding claims to the contrary in e.g. Hindmarsh (1996, equation (4)),
this second condition cannot be found by simply rewriting the parabolic partial
differential equation for the ice thickness in the ice-sheet interior; this procedure does
not introduce additional information into the problem. Instead, the second boundary
condition must be found by solving a boundary-layer problem which describes the
transition from ice-sheet to ice-shelf flow.

In this paper, we have considered the case of a two-dimensional ice sheet which
slides rapidly over its bed. The friction τb at the base of the ice is assumed to be
related to the sliding velocity u by a power-law relationship of the form τb = C|u|m−1u

with m > 0. Our analysis of the relevant boundary-layer problem has yielded two
principal results, as follows.

(i) If the axial deviatoric stresses in the grounded part of the ice sheet are negligible
then the ice thickness at the grounding line must be small compared with the ice
thickness in the interior of the ice sheet. This is necessary if ice fluxes at the grounding
line are to match ice fluxes upstream of the grounding line (see § 3.3). If the ice
thickness at the grounding line is comparable with the ice thickness inland, rapid
retreat of the grounding line ensues (§§ 3.2 and 4). Asymptotically, this result requires
zero ice thickness at leading order at the grounding line, for ice sheets which evolve
in their interior on the same time scale as that at which their grounding lines migrate.
Zero marginal ice thickness then replaces the flotation condition that is usually
applied.

(ii) The ice flux at the grounding line can be related to the ice thickness and hence
to the depth of the sea floor below sea level at the grounding line. This provides the
required second boundary condition. As may be expected physically, the ice flux is an
increasing function of the sea-floor depth. Equation (3.55) gives a good approximation
for this flux and can be written in dimensional terms as

q(xg, t) =

(
A(ρg)n+1(1 − ρ/ρw)n

4nC

)1/(m+1)

h(m+n+3)/(m+1). (5.1)

The first of these boundary conditions is somewhat surprising, especially as the ice-
sheet bed in parts of West Antarctica is over a kilometre below sea level. However, as
demonstrated in § 3.1, it is a necessary result of imposing the asymptotic limit ε � 1.
In fact, the only way in which vanishing ice thickness at the grounding line can be
avoided is if δ is also small, with δ ∼ ε. The relevant treatment of that limit is sketched
in the appendix. (Physically, the fact that parts of the Antarctic ice sheet are grounded
well below sea level also raises the question whether a grounding-line retreat into
these areas could precipitate a rapid and irreversible disintegration of the ice sheet,
as our results would suggest. One can also speculate whether the original growth of
the West Antarctic Ice Sheet occurred when the ice-sheet bed was rather less deep,
having subsequently been deepened by isostatic depression and glacial erosion.)

Qualitatively, the second boundary condition is of the same form as that used by
Oerlemans (2002), in the sense that it predicts a flux increasing with ice thickness, with
implications for ice-sheet stability that are discussed below. The boundary condition
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is also similar to that predicted previously by Chugunov & Wilchinsky (1996) and
subsequently used by Wilchinsky (2001) in his study of ice-sheet stability.

There is, however, a caveat: the reason why it is possible to relate ice
flux to ice thickness at the grounding line is that the axial deviatoric stress,
2A−1/nh|ux |1/n−1ux in dimensional terms, can be related directly to the ice thickness
through the second (stress) boundary condition in (2.6). This, in turn, is the case
because the spatially one-dimensional ice-shelf equation (2.2) combined with the
first boundary condition in (2.5) can be integrated explicitly to yield the second
equality in (2.6) (by one-dimensional we mean here that there is one independent
spatial variable, x; of course the shelf itself is two-dimensional, as mentioned
earlier).

When considering a two-dimensional analogue of (2.2a, b), the same force-balance
result no longer applies, and the ice sheet can no longer be uncoupled from the
ice shelf. This effect is known as ‘buttressing’ in glaciology (e.g. MacAyeal 1987),
a term also used to describe the sea phenomenon whereby floor protrusions make
contact with the base of a floating shelf (e.g. Dupont & Alley 2005b). A number of
heuristic ways to parameterize the effect of a three-dimensional ice shelf (involving two
independent spatial variables) have been devised (see e.g. Dupont & Alley 2005a).
Generally, a three-dimensional ice shelf, confined to an embayment as is typically
true of large ice shelves, is assumed to reduce the axial deviatoric stress at the
grounding line compared with the value predicted by (2.6a, b). It is however unclear
whether a simple correction factor such as that used for instance by Dupont & Alley
(2005a), which would correspond to a simple reduction in the parameter δ in the
scaled boundary condition (2.14), can adequately account for this, as the extent of
buttressing is likely to depend critically on the length of the ice shelf.

Given this caveat, a number of interesting fundamental questions can nevertheless
be addressed using our simple, spatially one-dimensional, depth-integrated model.
Firstly, our model shows that, for a given accumulation rate, two-dimensional marine
ice sheets have a discrete number of steady surface profiles for which the constraint
(3.60) is satisfied. This result, which confirms a similar one by Wilchinsky (2001),
stands in contrast with some numerical results recently obtained by Vieli & Payne
(2005) and Pattyn et al. (2006). These authors have found that a steady grounding-
line position in their models is sometimes neutrally stable to small perturbations.
This occurs in particular when the extent of the boundary layer between sheet flow
and shelf flow in their models is narrow, and it also appears to depend on the
numerical method chosen for tracking the grounding line as a free boundary. One
likely explanation is that the boundary layer is not resolved numerically by the
relatively coarse grids employed in their numerical work.

If ice sheets indeed admit a discrete set of steady surface profiles, this raises the
question whether these surface profiles are stable. A complete answer to this question
is beyond the scope of the present paper. Nonetheless, the simple mass-balance
argument in § 3.4 suggests that stability is controlled by bed slope: on the basis of
this argument, a stable two-dimensional steady marine ice sheet requires its margin
to be located on a sufficiently steep downward bed slope.

A number of interesting questions are still outstanding. A stability analysis for the
steady marine ice-sheet problem of § 3.4 is desirable in order to determine whether
the stability criterion (3.66) is valid. Given this criterion, a consideration of ice sheets
whose bed deforms under the weight of the overlying ice (e.g. Wilchinsky & Feltham
2004) becomes of interest, as bed deformation is likely to affect bed slopes at the
ice-sheet margin (as is glacial erosion). More generally, the extension of the present
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work to ice sheets which are not sliding rapidly is of significant interest, and this will
form the subject of a companion paper currently in preparation.

At a more physical level, there are numerous other complications to be addressed.
As predicted by our boundary-layer model, it is generally true that ice velocities near
the grounding line of marine ice sheets are fast, but this rapid ice flow is usually
channelized into ice streams (e.g. Alley & Bindschadler 2001), which are narrow bands
of rapidly flowing ice. This could change the boundary-layer problem significantly,
and an important effect then to take into account is that rapid sliding may in fact
be poorly described by a power law, as assumed in this paper, and may more closely
follow a Coulomb-type friction law (Iverson et al. 1999; Tulaczyk 1999; Schoof 2004,
2005, 2006a , b). In any case, pore water pressures at the base of the ice sheet are likely
to play an important role in the flow of these ice streams, and temporal variations
in sliding due to the melting and freezing of pore-water at the base of the ice may
also become important (e.g. Fowler & Johnson 1996; Tulaczyk, Kamb & Engelhardt
2000). Moreover, the effect of tides on the flow of ice in the sheet–shelf transition
zone is observed to cause stick–slip behaviour at the base of the ice, but the physical
mechanisms involved and their effect on the flow of the ice sheet over long time scales
are poorly understood (e.g. Anandakrishnan et al. 2003; Weertman 2005). Future
work will need to address these challenges.

This work was supported by the US National Science Foundation under grant
no. DMS-03227943. I should like to thank the editor, Howard Stone, as well as
Kolumban Hutter and two anonymous referees for their thorough scrutiny. Earlier
discussions with Richard Hindmarsh, Felix Ng, Andrew Fowler and Duncan Wingham
are also gratefully acknowledged.

Appendix A. The limit δ ∼ ε � 1

In the main part of this paper, we have treated δ as an O(1) parameter, though
realistically δ is ∼ 0.1 and so can be treated as small, so that the relative ordering
of ε and δ becomes important. Below, we sketch the case ε ∼ δ � 1 (or more
pertinently, ε ∼ δ/8), as this permits O(1) ice thicknesses hf at the grounding line
and the matching of fluxes with the interior of the ice sheet. In practice, this limit
requires ε ≈ 10−2, which in turn is possible only for very cold ice (for which A in
(2.8) becomes smaller) and for large sliding velocities [u].

The boundary conditions (2.14) can be written as

h = hf , ux =

(
δhf

8ε

)n

, at x = xg(t). (A 1)

As we shall demonstrate, a boundary layer is no longer required when δ ∼ 8ε,
and a Stefan-type condition determining the rate of grounding-line migration can
be computed directly. Taking the total derivative of the first equality in (A 1) with
respect to t yields

ht + hxẋg = hf xẋg, (A 2)

where ẋg = dxg/ dt and ht as well as hx are the relevant boundary values at x = xg .
Moreover hf x = ∂hf /∂x. From (3.1), (3.3) and (A 1), we have at x = xg

ht = a − uhx − uxh = a + h
1/m
f |(h − b)x |1/m−1(h − b)xhx − (δ/8ε)nhn+1

f . (A 3)
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Eliminating ht between (A 2) and (A 3) finally yields

(hf − h)x ẋg = a + h
1/m
f |(h − b)x |1/m−1(h − b)xhx − (δ/8ε)nhn+1

f (A 4)

as the required Stefan condition, which serves as one boundary condition for the
diffusion problem (3.3) at x = xg . The other boundary condition is naturally the flot-
ation condition h = hf . A similar boundary condition may be found in Thomas &
Bentley (1978).

Below, we show that the free-boundary condition (A 4) is consistent with the results
in § 3.3 in the appropriate limit, ε � δ � 1. Recall that in § 3.3, we considered the
case of small ε with δ =O(1). Next, we show that (3.51) corresponds not only to
taking the limit of small Hf in (3.39)–(3.41) but also to the limit of small δ (i.e. the
limit ε � δ � 1). Subsequently, we show that the same equation can also be obtained
from (A 4) by taking the same limit (so that ε � δ in (A 4)).

A.1. The limit δ � 1 in (3.39)–(3.41)

When δ � 1 in (3.39)–(3.41), the following rescaling becomes appropriate:

U = δn/(m+1)U ′, X = δ−mn/(m+1)X′. (A 5)

The boundary-layer problem (3.39)–(3.41) then becomes

4δ(H |U ′
X′ |1/n−1U ′

X′)X′ − |U ′|m−1U ′ + HHX′ =0
(U ′H )X′ =0

H � Hf

⎫⎬
⎭ on X′ ∈ (0, ∞), (A 6a, b)

H = Hf

|U ′
X′ |1/n−1U ′

X′ = −Hf /8

}
at X′ = 0 (A 7)

together with U ′ → 0, δn/(m+1)U ′H → Q, as X′ → ∞. Ignoring the O(δ) term in (A 6a)
gives the lubrication relation

U ′ = H 1/m|HX′ |1/m−1HX′, (A 8)

while (A 6b) gives

U ′HX′ + U ′
X′H = 0. (A 9)

Using this last equation at X′ = 0 with the boundary conditions (A 7) and (A 8) yields

|HX′ |1/m+1 = 8−nH
n+1−1/m
f , (A 10)

where the inequality in (A 6) further ensures that |HX′ | =HX′ � 0 at the grounding
line X′ = 0. Substituting this into (A 8) gives, at X′ = 0,

U ′H =
H

m+n+3/(m+1)
f

8n/(m+1)
. (A 11)

By (A 6b), U ′H remains constant for X′ finite. Hence matching gives Q =UH =
δn/(m+1)U ′H = (δ/8)n/(m+1)H

(m+n+3)/(m+1)
f as the flux relation for the outer problem,

which is the same as (3.51).
It is then apparent that Q ∼ O(δn/(m+1)) if Hf ∼ O(1) and that an O(1) flux requires

Hf = O(δ−n/(m+n+3)) (which implies that hf ∼ (ε/δ)−n/(m+n+3)). Without going into
details, we note that the derivation above carries over to this case under the rescaling
H ′ = δ−n/(m+n+3)H , H ′

f = δ−n/(m+n+3)Hf = (ε/δ)−n/(m+n+3)hf , again provided that ε �
δ � 1 and that (3.51) remains valid.
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A.2. The limit ε � δ in (A 4)

When ε � δ, the last paragraph in § A.1 above suggests that hf should in fact be of
order (ε/δ)n/(n+m+3). We rescale as follows:

h = (ε/δ)n/(n+m+3)H, hf = (ε/δ)n/(n+m+3)Hf ,

b = (ε/δ)n/(n+m+3)B, x = (ε/δ)n(m+2)/(n+m+3)X,

}
(A 12)

the last rescaling being motivated by the distance rescaling in § 3.3. As in § 3.3, we
again suppose that the outer (x−) length scale is the scale over which bed topography
varies, and retain Bx and Hf x = (1 − δ)−1Bx as the relevant bed and flotation slopes
(rather than BX and Hf X). Then (A 4) becomes

(ε

δ

)n/(n+m+3)
(

HX −
(ε

δ

)n(m+2)/(n+m+3)

Hf x

)
ẋg

=
(ε

δ

)n(m+2)/(n+m+3)

a + H
1/m
f

∣∣∣∣HX −
(ε

δ

)n(m+2)/(n+m+3)

Bx

∣∣∣∣
1/m−1

×
(

HX −
(ε

δ

)n(m+2)/(n+m+3)

Bx

)
Hx −

Hn+1
f

8n
. (A 13)

Ignoring higher-order terms in ε/δ,

H
1/m
f |Hx |1/m+1 = Hn+1

f /8n. (A 14)

Using the fact that bed slopes are assumed small, as explained above, we have
Q =h1/m+1|hx |1/m−1hx |x = xg

= H
1/m+1
f |HX|1/m−1HX|X = 0 and finally obtain the desired

result,

q =
H

(m+n+3)/(m+1)
f

8n/(m+1)
. (A 15)

Thus the two determinations of flux in the limit ε � δ � 1 agree.
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